Senin, 23 November 2009
mUsIc
NyaNtaI yUUUk................
abis.................belajar...
mending dengerin music.......for rilex!!!!!!!!!
Minggu, 22 November 2009
Ilmuwan ialah orang yang bekerja dan mendalami dengan tekun bidang ilmu pengetahuan sains yang termasuk didalamnya bidang ilmu alam atau ilmu sosial. Para ilmuwan yang terjun dalam bidang fisika disebut fisikawan
Eksperimen Fisika
Alat dan bahan yang diperlukan:
1. karton yang agak tebal
2. gunting
3. ember/baskom penuh air
4. detergen
Langkah-langkah pembuatan:
* Buatlah rangka perahu dari karton seperti pada gambar kira-kira 7 cm x 3 cm (ukuran dapat disesuaikan). Ini gambarnya:
* Letakkan perahu perlahan ke dalam ember yang telah diisi air.
* Masukkan detergen sedikit demi sedikit di bagain belakang perahu. Dan lihat apakah yang akan terjadi.
* Ternyata perahu akan melaju, mengapa ya? Ini disebabkan karena adanya pengaruh tegangan permukaan. Seperti yang kita tahu, karena adanya gaya kohesi antar molekul air khususnya di bagian permukaan membuat sebuah lapisan tipis dan fleskibel yang disebut tegangan permukaan. Dengan menambah detergen ternyata akan memecah lapisan air dan membuat perahu melaju.
Catatan:
Setelah melakukan satu kali percobaan, bersihkan kembali embernya kemudian gunakan air yang baru jika ingin melakukan percobaannya lagi.
Membuat Api Dari Es
Alat dan bahan yang diperlukan:
1. Tempurung kelapa atau mangkuk
2. Kertas dan plastik
3. Air
4. Almari es
5. Rumput kering atau benda yang mudah terbakar
Langkah-langkah pembuatan:
* Buatlah lensa cembung dari bahan es, begini cara buatnya nih:
1. Tempurung/mangkok dialasi dengan kertas dan plastik (agar es mudah dipisahkan dari tempurung atau mangkok)
2. Isi tempurung/mangkok dengan air
3. Masukkan ke almari es dan tunggu sampai membeku.
4. Pisahkan es dari tempurung.
* Pada siang hari (sekitar pukul 11.00 – 13.00) letakkan rumput kering di tanah lapang dan peganglah lensa cembung buatanmu tadi serta arahkan ke cahaya matahari sedemikian rupa sehingga cahaya terpusat pada rumput kering.
Sulap Fisika
Alat dan bahan:
* Sebuah botol yang memiliki diameter mulut yang cukup besar, namun tidak dapat dilalui sebutir telur.
* Sebutir telur ayam yang telah direbus dan dikupas kulitnya
* Beberapa lembar kertas
* Korek api
* Beberapa butir dry ice (biang es)
Langkah-langkah percobaan :
Jika dipikir-pikir, kita tak mungkin dapa memasukkan telur ke dalam botol apalagi diameter mulut botolnya lebih kecil dari ukuran telur. Tapi ternyata secara fisika, memasukkan dan mengeluarkan telur ke dalam botol ialah hal yang mudah. Tidak percaya? Mari kita lihat penjelasan di bawah ini.
Memasukkan telur ke dalam botol
* Siapkan botol dan telur yang akan digunakan
* Bakar selembar kertas kemudian segera masukkan ke dalam botol
* Segera letakkan telur di atas mulut botol segera saat api masih menyala,
* lalu berikan sedikit tekanan, hal ini dimaksudkan agar botol menjadi terisolasi dari udara luar.
* Diamkan beberapa saat, maka telur perlahan-lahan akan masuk ke dalam botol
Mengeluarkan telur dari dalam botol
* Masukkan beberapa butir dry ice ke dalam botol
* Kemudian balik botol sehingga telur terletak pada mulut botol bagian dalam, usahakan jangan sampai ada dry ice yang keluar botol
* Lalu jaga agar dry ice tidak terlalu lama menyentuh telur, diamkan beberapa saat sampai telur kluar seluruhnya dari dalam botol
Konsep Fisika :
Dalam percobaan ini, teori fisika yang berperan ialah tekanan udara.
Memasukkan telur ke dalam botol
Anggapan dasarnya adalah bahwa nyala api dapat terjadi ketika terdapat kandungan oksigen dalam jumlah yang cukup di dalam udara. Nah, proses pembakaran ini akan menghabiskan sejumlah mol oksigen sesuai dengan jumlah yang diperlukan dalam pembakaran tersebut. Pada saat kertas yang telah terbakar dimasukkan ke dalam botol, api tersebut akan terus menyala sambil mereaksikan antara oksigen dengan kertas. Lama-kelamaan jumlah oksigen dalam botol akan habis.
Sebagaimana yang telah diketahui bahwa jumlah mol zat yang bereaksi sebanding dengan tekanannya ( pV = nRT), maka pada saat jumlah mol oksigen dalam botol berkurang, tekanan dalam botol pun akan turun. Hal ini menyebabkan tekanan udara dalam botol akan lebih rendah daripada tekanan udara luar. Akibatnya telur akan mendapat tekanan dari luar sehingga perlahan-lahan telur akan terlihat seolah-olah terhisap ke dalam botol sampai masuk seluruhnya ke dalam botol.
Mengeluarkan telur dari dalam botol
Konsep yang digunakan untuk mengeluarkan telur dari dalam botol tidak banyak berbeda dari proses memasukkan telur ke dalam botol, yang berbeda hanyalah melakukan hal yang sebaliknya, yaitu dengan meningkatkan tekanan di dalam botol sehingga lebih tinggi dari tekanan di luar botol.
Dengan memasukkan dry ice ke dalam botol mampu menaikkan tekanan di dalam botol tersebut. Sebagaimana yang telah diketahui bahwa bahan dasar pembuat dry ice adalah semacam gas yang dipadatkan, maka dalam suhu kamar dry ice akan menyublim dan menghasilkan gas. Nah, gas inilah yang digunakan untuk mendorong telur keluar dari dalam botol.
Memanaskan Air Dalam Gelas Plastik
Alat dan bahan :
* Air mineral
* Gelas plastik
* Korek api
Langkah percobaan :
1. Dengan alat dan bahan yang tersedia, kita panaskan air (terserah bagaimana caranya).
2. Tetapi selama pemanasan, air tidak boleh dipindahkan dari gelas plastik tsb.
Konsep fisika :
Pada saat kita memanaskan langsung gelas berisi air mineral (seperti memasak dengan panci). Kalor mengalir dari sumber panas melintasi permukaan gelas dan diteruskan ke air. Namun, bukannya gelas meleleh karena panas yang ditimbulkan, justru air yang malah menjadi panas. Lalu kenapa hal ini terjadi? Dalam kasus gelas plastik kosong, panas yang diberikan akan langsung melelehkanya jika suhunya melebihi ambang tiitk leleh plastik. Namun ketika dalam gelas diisi air, kalor yang seharusnya melelehkan plastik dihantarkan ke air. Secara skematis, alur penghantaran panas dapat dilihat pada gambar.
Kalor dihantarkan oleh permukaan gelas ke air, dan kalor ini dimanfaatkan untuk memanaskan air. Karena kalor jenis air tinggi, waktu yang dibutuhkan untuk memanskan sampi suhu yang mampu melelehkan plastik cukup lama, akibatnya gelas plastik lebih tahan lama tanpa meleleh.
Rabu, 11 November 2009
पेनेरापन इल्मु फिसका दलम केहिदुपन सहरी-Hari
Energi Potensial Gravitasi
Contoh yang paling umum dari energi potensial adalah energi potensial gravitasi. Buah mangga yang lezat dan ranum memiliki energi potensial gravitasi ketika sedang menggelayut pada tangkainya. Demikian juga ketika anda berada pada ketinggian tertentu dari permukaan tanah (misalnya di atap rumah ;) atau di dalam pesawat). Energi potensial gravitasi dimiliki benda karena posisi relatifnya terhadap bumi. Setiap benda yang memiliki energi potensial gravitasi dapat melakukan kerja apabila benda tersebut bergerak menuju permukaan bumi (misalnya buah mangga jatuh dari pohon). Untuk memudahkan pemahamanmu, lakukan percobaan sederhana berikut ini. Pancangkan sebuah paku di tanah. Angkatlah sebuah batu yang ukurannya agak besar dan jatuhkan batu tegak lurus pada paku tersebut. Amati bahwa paku tersebut terpancang semakin dalam akibat usaha alias kerja yang dilakukan oleh batu yang anda jatuhkan.
Sekarang mari kita tentukan besar energi potensial gravitasi sebuah benda di dekat permukaan bumi. Misalnya kita mengangkat sebuah batu bermassa m. gaya angkat yang kita berikan pada batu paling tidak sama dengan gaya berat yang bekerja pada batu tersebut, yakni mg (massa kali percepatan gravitasi). Untuk mengangkat batu dari permukaan tanah hingga mencapai ketinggian h, maka kita harus melakukan usaha yang besarnya sama dengan hasil kali gaya berat batu (W = mg) dengan ketinggian h. Ingat ya, arah gaya angkat kita sejajar dengan arah perpindahan batu, yakni ke atas… FA = gaya angkat
W = FA . s = (m)(-g) (s) = – mg(h2-h1) —– persamaan 1
Tanda negatif menunjukkan bahwa arah percepatan gravitasi menuju ke bawah…
Dengan demikian, energi potensial gravitasi sebuah benda merupakan hasil kali gaya berat benda (mg) dan ketinggiannya (h). h = h2 – h1
EP = mgh —— persamaan 2
Berdasarkan persamaan EP di atas, tampak bahwa makin tinggi (h) benda di atas permukaan tanah, makin besar EP yang dimiliki benda tersebut. Ingat ya, EP gravitasi bergantung pada jarak vertikal alias ketinggian benda di atas titik acuan tertentu. Biasanya kita tetapkan tanah sebagai titik acuan jika benda mulai bergerak dari permukaan tanah atau gerakan benda menuju permukaan tanah. Apabila kita memegang sebuah buku pada ketinggian tertentu di atas meja, kita bisa memilih meja sebagai titik acuan atau kita juga bisa menentukan permukaan lantai sebagai titik acuan. Jika kita tetapkan permukaan meja sebagai titik acuan maka h alias ketinggian buku kita ukur dari permukaan meja. Apabila kita tetapkan tanah sebagai titik acuan maka ketinggian buku (h) kita ukur dari permukaan lantai.
Jika kita gabungkan persamaan 1 dengan persamaan 2 :
Persamaan ini menyatakan bahwa usaha yang dilakukan oleh gaya yang menggerakan benda dari h1 ke h2 (tanpa percepatan) sama dengan perubahan energi potensial benda antara h1 dan h2. Setiap bentuk energi potensial memiliki hubungan dengan suatu gaya tertentu dan dapat dinyatakan sama dengan EP gravitasi. Secara umum, perubahan EP yang memiliki hubungan dengan suatu gaya tertentu, sama dengan usaha yang dilakukan gaya jika benda dipindahkan dari kedudukan pertama ke kedudukan kedua. Dalam makna yang lebih sempit, bisa dinyatakan bahwa perubahan EP merupakan usaha yang diperlukan oleh suatu gaya luar untuk memindahkan benda antara dua titik, tanpa percepatan.
Energi Potensial Elastis
Sebagaimana dijelaskan pada bagian awal tulisan ini, selain energi potensial gravitasi terdapat juga energi potensial elastis. EP elestis berhubungan dengan benda-benda yang elastis, misalnya pegas. Mari kita bayangkan sebuah pegas yang ditekan dengan tangan. Apabila kita melepaskan tekanan pada pegas, maka pegas tersebut melakukan usaha pada tangan kita. Efek yang dirasakan adalah tangan kita terasa seperti di dorong. Apabila kita menempelkan sebuah benda pada ujung pegas, kemudian pegas tersebut kita tekan, maka setelah dilepaskan benda yang berada di ujung pegas pasti terlempar…. perhatikan gambar di bawah. Jika dirimu mempunyai koleksi pegas, baik di rumah maupun di sekolah, silahkan melakukan percobaan ini untuk membuktikannya….
Ketika berada dalam keadaan diam, setiap pegas memiliki panjang alami, seperti ditunjukkan gambar a (lihat gambar di bawah). Jika pegas di tekan sejauh x dari panjang alami, diperlukan gaya sebesar FT (gaya tekan) yang nilainya berbanding lurus dengan x, yakni :
FT = kx
k adalah konstanta pegas (ukuran kelenturan/elastisitas pegas) dan besarnya tetap. Ketika ditekan, pegas memberikan gaya reaksi, yang besarnya sama dengan gaya tekan tetapi arahnya berlawanan. gaya reaksi pegas tersebut dikenal sebagai gaya pemulih. Besarnya gaya pemulih adalah :
FP = -kx
Tanda minus menunjukkan bahwa arah gaya pemulih berlawanan arah dengan gaya tekan. Ini adalah persamaan hukum Hooke. Persamaan ini berlaku apabila pegas tidak ditekan sampai melewati batas elastisitasnya (x tidak sangat besar).
Untuk menghitung Energi Potensial pegas yang ditekan atau diregangkan, terlebih dahulu kita hitung gaya usaha yang diperlukan untuk menekan atau meregangkan pegas. Kita tidak bisa menggunakan persamaan W = F s = F x, karena gaya tekan atau gaya regang yang kita berikan pada pegas selalu berubah-ubah selama pegas ditekan. Ketika menekan pegas misalnya, semakin besar x, gaya tekan kita juga semakin besar. Beda dengan gaya angkat yang besarnya tetap ketika kita mengangkat batu. Lalu bagaimana cara mengakalinya ?
Kita menggunakan gaya rata-rata. Gaya tekan atau gaya regang selalu berubah, dari F = 0 ketika x = 0 sampai F = kx (ketika pegas tertekan atau teregang sejauh x). Besar gaya rata-rata adalah :
x merupakan jarak total pegas yang teregang atau pegas yang tertekan (bandingkan dengan gambar di atas).
Usaha yang dilakukan adalah :
Nah, akhirnya kita menemukan persamaan Energi Potensial elastis (EP Pegas)….
Catatan :
Tidak ada rumus umum untuk Energi Potensial. Berbeda dengan energi kinetik yang memiliki satu rumus umum, EK = ½ mv2, bentuk persamaan EP bergantung gaya yang melakukan usaha… kalo bingung berlanjut, silahkan pelajari kembali ya…. sampai teler
Sekarang, mari kita pelajari pokok bahasan Energi Kinetik….
Istirahat dulu, masa ga teller dari tadi pelototin terus ne tulisan pisss……
Energi Kinetik
Setiap benda yang bergerak memiliki energi. Ketapel yang ditarik lalu dilepaskan sehingga batu yang berada di dalam ketapel meluncur dengan kecepatan tertentu. Batu yang bergerak tersebut memiliki energi. Jika diarahkan pada ayam tetangga maka kemungkinan besar ayam tersebut lemas tak berdaya akibat dihajar batu. Pada contoh ini batu melakukan kerja pada ayam Kendaraan beroda yang bergerak dengan laju tertentu di jalan raya juga memiliki energi kinetik. Ketika dua buah kendaraan yang sedang bergerak saling bertabrakan, maka bisa dipastikan kendaraan akan digiring ke bengkel untuk diperbaiki. Kerusakan akibat tabrakan terjadi karena kedua mobil yang pada mulanya bergerak melakukan usaha / kerja satu terhadap lainnya. Ketika tukang bangunan memukul paku menggunakan martil, martil yang digerakan tukang bangunan melakukan kerja pada paku.
Setiap benda yang bergerak memberikan gaya pada benda lain dan memindahkannya sejauh jarak tertentu. Benda yang bergerak memiliki kemampuan untuk melakukan kerja, karenanya dapat dikatakan memiliki energi. Energi pada benda yang bergerak disebut energi kinetik. Kata kinetik berasal dari bahasa yunani, kinetikos, yang artinya “gerak”. ketika benda bergerak, benda pasti memiliki kecepatan. Dengan demikian, kita dapat menyimpulkan bahwa energi kinetik merupakan energi yang dimiliki benda karena gerakannya atau kecepatannya.
Sekarang mari kita turunkan persamaan Energi Kinetik.
Untuk menurunkan persamaan energi kinetik, bayangkanlah sebuah benda bermassa m sedang bergerak pada lintasan lurus dengan laju awal vo.
Agar benda dipercepat beraturan sampai bergerak dengan laju v maka pada benda tersebut harus diberikan gaya total yang konstan dan searah dengan arah gerak benda sejauh s. Untuk itu dilakukan usaha alias kerja pada benda tersebut sebesar W = F s. Besar gaya F = m a.
Karena benda memiliki laju awal vo, laju akhir vt dan bergerak sejauh s, maka untuk menghitung nilai percepatan a, kita menggunakan persamaan vt2 = vo2 + 2as.
Kita subtitusikan nilai percepatan a ke dalam persamaan gaya F = m a, untuk menentukan besar usaha :
Persamaan ini menjelaskan usaha total yang dikerjakan pada benda. Karena W = EK maka kita dapat menyimpulkan bahwa besar energi kinetik translasi pada benda tersebut adalah :
W = EK = ½ mv2 —– persamaan 2
Persamaan 1 di atas dapat kita tulis kembali menjadi :
Persamaan 3 menyatakan bahwa usaha total yang bekerja pada sebuah benda sama dengan perubahan energi kinetiknya। Pernyataan ini merupakan prinsip usaha-energi. Prinsip usaha-energi berlaku jika W adalah usaha total yang dilakukan oleh setiap gaya yang bekerja pada benda. Jika usaha positif (W) bekerja pada suatu benda, maka energi kinetiknya bertambah sesuai dengan besar usaha positif tersebut (W). Jika usaha (W) yang dilakukan pada benda bernilai negatif, maka energi kinetik benda tersebut berkurang sebesar W. Dapat dikatakan bahwa gaya total yang diberikan pada benda di mana arahnya berlawanan dengan arah gerak benda, maka gaya total tersebut mengurangi laju dan energi kinetik benda. Jika besar usaha total yang dilakukan pada benda adalah nol, maka besar energi kinetik benda tetap (laju benda konstan).
Tata Surya
Kumpulan berita-berita yang berhubungan dengan perkembangan sains, terutama yang masih berhubungan dengan materi pelajaran IPA – Fisika.
TERNYATA BULAN SEMAKIN MENJAUH
Pada suatu masa—jutaan tahun ke depan—keturunan kita tidak akan bisa melihat bulan seperti sekarang.
Tidak ada lagi fenomena gerhana matahari ataupun bulan total, kecuali dalam jejak rekam sejarah sains. Lambat, tetapi pasti bulan semakin bergerak menjauh dari bumi.
Bukan tanpa alasan Neil Armstrong—manusia pertama yang menginjakkan kakinya di bulan—meninggalkan jejak panel reflektor yang terdiri atas 100 cermin beberapa menit sebelum dia meninggalkan bulan pada 21 Juli 1969. Reflektor inilah yang kemudian menuntun manusia pada penemuan fakta mencengangkan.
Memanfaatkan reflektor yang tertinggal di bulan, Prof Carrol Alley, fisikawan dari University of Maryland, Amerika Serikat, mengamati pergerakan orbit bulan. Caranya adalah dengan menembakkan laser dari observatorium ke reflektor di bulan. Di luar dugaan, dari hasil pengamatan tahunan, jarak bumi-bulan yang terekam dari laju tempuh laser bumi-bulan terus bertambah.
Diperkuat sejumlah pengamatan di McDonald Observatory, Texas, AS, dengan menggunakan teleskop 0,7 meter diperoleh fakta bahwa jarak orbit bulan bergerak menjauh dengan laju 3,8 sentimeter per tahun.
Para ahli meyakini, 4,6 miliar tahun lalu, saat terbentuk, ukuran bulan yang terlihat dari bumi bisa 15 kali lipat daripada sekarang. Jaraknya saat itu hanya 22,530 kilometer, seperduapuluh jarak sekarang (385.000 km).
Seandainya manusia sudah hidup pada masa itu, hari-hari yang dijalankan terasa lebih cepat. Hitungan kalender pun bakal berbeda. Bagaimana tidak, jika dalam sebulan waktu edar mengelilingi bumi hanya 20 hari, bukan 29-30 hari seperti sekarang. Rotasi bumi ketika itu pun berlangsung lebih cepat, hanya 18 jam sehari.
Jutaan tahun dari sekarang, seiring dengan menjauhnya bulan, hari-hari di bumi pun akan semakin lama, hingga mencapai 40 hari dalam sebulan. Hari pun bisa berlangsung semakin lama, hingga 30 jam. Lantas, mengapa ini bisa terjadi?
Takaho Miura dari Universitas Hirosaki, Jepang, dalam jurnal Astronomy & Astrophysics mengemukakan, jika bumi dan bulan, termasuk matahari, saling mendorong dirinya. Salah satunya, ini dipicu interaksi gaya pasang surut air laut.
Gaya pasang surut yang diakibatkan bulan terhadap lautan di bumi ternyata berangsur-angsur memindahkan gaya rotasi bumi ke gaya pergerakan orbit bulan. Akibatnya, tiap tahun orbit bulan menjauh. Sebaliknya, rotasi bumi melambat 0,000017 detik per tahun.
Sumber: kompas.com
Stabilitas iklim
Fakta menjauhnya orbit bulan ini menjadi ancaman tidak hanya populasi manusia, tetapi juga kehidupan makhluk hidup di bumi. Pergerakan bulan, seperti diungkapkan Dr Jacques Laskar, astronom dari Paris Observatory, berperan penting menjaga stabilitas iklim dan suhu di bumi.
”Bulan adalah regulator iklim bumi. Gaya gravitasinya menjaga bumi tetap berevolusi mengelilingi matahari dengan sumbu rotasi 23 derajat. Jika gaya ini tidak ada, suhu dan iklim bumi akan kacau balau. Gurun Sahara bisa jadi lautan es, sementara Antartika menjadi gurun pasir,” ucapnya kepada Science Channel.
Sejumlah penelitian menyebutkan, pergerakan bulan juga berpengaruh terhadap aktivitas makhluk hidup. Terumbu karang, misalnya, biasa berkembang biak, mengeluarkan spora, ketika air pasang yang disebabkan bulan purnama tiba.
Bulan penuh juga dipercaya meningkatkan perilaku agresif manusia. Di Los Angeles, AS, kepolisian wilayah setempat biasanya akan lebih waspada terhadap peningkatan aktivitas kriminal saat purnama.
Menjauhnya bulan dari bumi diyakini ahli geologis juga berpengaruh terhadap aktivitas lempeng bumi. Beberapa ahli telah lama menghubungkan kejadian sejumlah gempa dengan aktivitas bulan. ”Kekuatan yang sama yang menyebabkan laut pasang ikut memicu terangkatnya kerak bumi,” ucap Geoff Chester, astronom yang bekerja di Pusat Pengamatan Angkatan Laut AS, seperti dikutip dari National Geographic.
Beberapa kejadian gempa besar di Tanah Air yang pernah tercatat diketahui juga terkait dengan pergerakan bulan. Gempa-tsunami Nanggroe Aceh Darussalam (2004), Nabire (2004), Simeuleu (2005), dan Nias (2005) terjadi saat purnama. Gempa Mentawai (2005) dan Yogyakarta (2005) terjadi pada saat bulan baru dan posisi bulan di selatan.
Misi terbaru NASA
Kini, bulan sebagai tetangga terdekat bumi kembali menjadi perhatian riset astronomi di dunia. Badan Penerbangan dan Antariksa AS (NASA) pada Jumat (19/6) meluncurkan wahana LCRoS (Lunar Crater Observation and Sensing Satellite) di Cape Canaveral, AS. Wahana ini adalah bagian dari misi Lunar Reconnaissance Orbiter (LRO), yaitu persiapan program mengembalikan astronot ke bulan tahun 2020 setelah terakhir dilakukan pada 1969-1972 (Reuters, 18/6).
Sasaran utama misi LCRoS untuk memastikan ada tidaknya air beku yang dipercaya berada di kawasan kawah gelap dekat kutub bulan. Dibantu dengan LRO yang memetakan permukaan di bulan secara detail, kedua misi baru ini mengisyaratkan hal besar: menancapkan tonggak baru soal kemungkinan membangun koloni di luar bumi!
Namun, dengan penuh kerendahan hati, Craig Tooley, LRO Project Manager, mengatakan, ”Pengetahuan kita tentang bulan secara keseluruhan saat ini masih minim. Kita punya peta lebih baik tentang Mars, tetapi tidak untuk bulan kita sendiri.”
SEORANG ANAK DITABRAK METEOR?
Okezone.com Senin, 15 Juni 2009 – 07:17 wib
BERLIN – Seorang anak berusia 14 tahun, warga negara Jerman, mengklaim bahwa dirinya telah ditabrak oleh meteor yang berkecepatan 30.000 mph.
Meteor berukuran sebesar biji kacang polong itu berhasil mengenai tangan kirinya dan meninggalkan sebuah luka yang cukup dalam.
“Ketika meteor tersebut menabrak, saya sempat terkejut dan tidak sadarkan diri. Bahkan ketika saya sadar, meteor tersebut sudah menyatu dengan tanah,” ujar remaja bernama Gerrit Blank itu, seperti dilansir melalui Space.com, Senin (15/6/2009).
Para astronom yang meneliti kejadian ini membenarkan bahwa Blank memang terkena ‘timpuk’ sebuah benda yang berasal dari luar angkasa.
“Kebanyakan meteor memang langsung menguap saat berada di atmofir, untuk kemudian tercipta bintang jatuh, dan meteor biasanya tidak pernah mencapai tanah,” ujar tim ilmuwan yang meneliti kejadian ini.
Menurut mereka, kebanyakan meteor yang jatuh dan menimpa bumi terbuat dari metal. Bahkan kebanyakan batu luar angkasa, meskipun mereka berukuran sebesar mobil, akan langsung terbelah atau meledak, jika meteor-meteor tersebut jatuh ke bumi.
Beberapa kejadian meteor yang menimpa rumah, mobil atau barang-barang besar yang ada di bumi memang cukup banyak. Namun para ilmuwan merasa heran jika ada manusia yang pernah tertimpa meteor dan hanya mengalami luka.
“Jika meteor mampu meledakkan rumah dan mobil, pastinya meteor akan membuat seseorang terbunuh,” ujar ilmuwan. (srn
KOMET SUMBER KEHIDUPAN DI BUMI?
Okezone.com Kamis, 30 April 2009 – 11:02 wib
LONDON – Komet selalu mempesona bagi setiap orang. Penemuan baru dari para ilmuwan nampaknya akan semakin menambah pesona tersebut. Pasalnya, mereka menemukan bahwa komet memiliki berbagai elemen yang berkontribusi pada kemunculan kehidupan di Bumi.
Tim dari Tel Aviv University yang diketuai oleh Professor Akiva Bar-Nun, mengatakan bahwa komet diyakini merupakan elemen yang tertinggal, yang sangat dibutuhkan pada awal pembentukan Bumi di masa silam. Konon, kandungan komposisi kimia dalam komet membantu mereka memulai kehidupan.
“Komet yang meluncur ke Bumi melalui atmosfer sekira empat miliar tahun lalu membawa muatan organik dalam kapasitas besar ke Bumi yang kala itu masih muda. Materi tersebut kemudian bergabung dengan sekumpulan raksasa materi organik lainnya di Bumi dan membentuk kehidupan di Bumi,” demikian ujar Profesor Bar-Nun yang dikutip dari Times of India, Kamis (30/4/2009).
Dengan menggunakan sejenis mesin yang dibuat oleh tim dari Tel Aviv University, para ilmuwan melakukan simulasi komet es. Dari simulasi itu ditemukan, komet tersebut mengandung bahan-bahan yang diperlukan dalam pembentukan Bumi.
Secara spesfik, mereka membandingkannya dengan sejenis gas mulia seperti Argon, Krypton, dan Xenon karena gas tersebut tidak bercampur dengan elemen lain dan tidak termusnahkan oleh Oksigen Bumi. Elemen tersebut memiliki proporsi yang utuh dalam atmosfer Bumi sepanjang kehidupan planet. (srn)
KOMET 2 KALI MUSNAHKAN KEHIDUPAN
Okezone.com Senin, 5 Januari 2009 – 12:06 wib
WASHINGTON – Bumi yang kita huni selama ini, ternyata sudah dua kali dihantam oleh komet. Hantaman ini pula yang menyebabkan bumi mengalami kemusnahan.
Seperti diketahui, bahwa selama ini diketahui kalau komet yang menghujam Bumi hanya terjadi satu kali, yaitu pada 65 juta tahun lalu, yang memusnahkan kehidupan pada jaman itu. Akan tetapi, sebuah penelitian mengungkapkan kalau 13 ribu tahun lalu, komet juga pernah menghantam Bumi, sehingga seluruh denyut kehidupan berhenti.
Penelitian yang dipimpin oleh Douglas Kennett dari University of Oregon mengungkapkan ledakan sebuah komet besar pernah membunuh mammoth, harimau bergigi besar serta mamalia besar lainnya di Arizona, serta sejumlah besar kawasan di Amerika Utara.
Dalam laporan tersebut juga ditambahkan, sebuah komet yang telah membeku ratusan juta tahun lalu berhasil masuk atmosfer bumi dan memusnahkan binatang-binatang besar tersebut.
Di beberapa wilayah benua Amerika, peneliti menemukan nanodiamond, sebuah partikel mikroskopik yang ditemukan pada komet di lapisan berumur 13.000 tahun yang disebut ‘black mat’. Di bawah lapisan nanodiamond tersebut, terdapat fosil dalam jumlah sangat besar. Sedangkan di bawah lapisan lainnya itu tidak ditemukan adanya fosil sama sekali.
“Data ini mendukung hipotesa yang mendukung komet atau karbon khondrites (jenis meteorit), mampu menyebabkan ‘kejutan’ di udara dan kemungkinan berdampak pada permukaan 13 ribu tahun lalu,” terang Douglas Kennett, seperti yang dilansir Reuters, Senin (5/1/2009).
“Penelitian ini memberikan bukti-bukti kuat bahwa kosmik berdampak pada peristiwa sekitar 13 ribu tahun yang lalu. Dan ini akan mempunyai banyak konsekuensi lingkungan untuk tanaman, hewan dan manusia di Amerika Utara,” pungkasnya. (srn)
BUNGA TUMBUH DI JUPITER
Okezone.com Jum’at, 8 Mei 2009 – 09:16 wib
LONDON - Ilmuwan telah memperkirakan bahwa pesawat ruang angkasa telah menemukan tanda-tanda kehidupan pada bulan milik planet Jupiter bernama Europa.
Mereka telah menemukan bahwa di bulan yang tertutupi es ini tumbuh sekumpulan bunga yang bermekaran di sana.
Europa telah lama menjadi incaran penelitian para ahli astrobiologi karena diperkirakan di bawah permukaan es bulan ini terdapat kandungan air laut, yang mengindikasikan adanya kehidupan. Namun karena sangat keras dan tebalnya, sulit bagi para ilmuwan untuk menggali dan menganalisa lapisan ini.
“Tanda-tanda kehidupan dapat terlihat dari orbit pesawat ruang angkasa. Namun jika terdapat lubang hasil galian pada lapisan Europa, akan menghubungkan permukaan ke bagian dalam,” ujar ahli fisika dan futuris Freeman Dyson, yang dikutip dari Times of India, Jumat (8/5/2009).
Jenis kehidupan tertentu mungkin saja terjadi dalam pertumbuhan bunga seperti parabola yang tertuju pada cahaya matahari pada bagian dalam tumbuhan.
Bunga yang tumbuh di Europa dapat terdeteksi melalui retroreflection, yaitu efek optik yang terlihat dalam cahaya yang dipantulkan dari mata hewan atau tumbuhan,” tandas Dyson. (srn)
SATURNUS DIKELILINGI 4 BULAN
Okezone.com Rabu, 18 Maret 2009 – 12:20 wib
FLORIDA – Perangkat perekam gambar milik NASA berhasil menangkap fenomena yang cukup langka. Dalam gambar tersebut, planet Saturnus dikelilingi oleh empat buah planet seukuran bulan.
Dilansir melalui Space.com, Rabu (18/3/2009), gambar yang diambil pada 24 Februari lalu oleh Hubble Telescope ini memperlihatkan empat planet bulan itu berdiam sejenak di muka Saturnus dalam posisi berjajar.
Bulan-bulan tersebut, diindetifikasi dari kiri ke kanan, adalah dua buah bulan es berwarna putih bernama Enceladus dan Dione, bulan besar berwarna oranye bernama Titan dan satu bulan es lainnya bertajuk Mimas.
Fenomena ini tergolong langka karena hanya terjadi ketika cincin Saturnus dalam keadaan terlalu miring, jika dillihat dari bumi. Pinggiran cincin Saturnus akan terlihat sangat jelas dari bumi pada tanggal 10 Agustus dan 4 September 2009 karena saat itu posisi Saturnus akan sangat dekat dengan matahari. Fenomena ini dikabarkan hanya akan terjadi setiap 14 hingga 15 tahun sekali.
Gambar Saturnus ini diambil dalam jarak 1,25 miliar kilometer dari bumi. (srn)
PERMUKAAN MERKURIUS MENYUSUT
Okezone.com Rabu, 18 Maret 2009 – 12:20 wib
FLORIDA – Perangkat perekam gambar milik NASA berhasil menangkap fenomena yang cukup langka. Dalam gambar tersebut, planet Saturnus dikelilingi oleh empat buah planet seukuran bulan.
Dilansir melalui Space.com, Rabu (18/3/2009), gambar yang diambil pada 24 Februari lalu oleh Hubble Telescope ini memperlihatkan empat planet bulan itu berdiam sejenak di muka Saturnus dalam posisi berjajar.
Bulan-bulan tersebut, diindetifikasi dari kiri ke kanan, adalah dua buah bulan es berwarna putih bernama Enceladus dan Dione, bulan besar berwarna oranye bernama Titan dan satu bulan es lainnya bertajuk Mimas.
Fenomena ini tergolong langka karena hanya terjadi ketika cincin Saturnus dalam keadaan terlalu miring, jika dillihat dari bumi. Pinggiran cincin Saturnus akan terlihat sangat jelas dari bumi pada tanggal 10 Agustus dan 4 September 2009 karena saat itu posisi Saturnus akan sangat dekat dengan matahari. Fenomena ini dikabarkan hanya akan terjadi setiap 14 hingga 15 tahun sekali.
Gambar Saturnus ini diambil dalam jarak 1,25 miliar kilometer dari bumi. (srn)
BUKTI PERTAMA ADA DANAU DI MARS
WASHINGTON, Ngarai dalam dan panjang serta bekas pantai barangkali merupakan bukti paling jelas mengenai keberadaan danau di permukaan Mars. Menurut beberapa ilmuwan, Rabu (17/6), diduga danau itu pernah berisi air, tetapi kini sudah kering.
Gambar dari sebuah kamera yang disebut High Resolution Imaging Science Experiment di pesawat Reconnaissance Orbiter menunjukkan air memotong ngarai sepanjang 50 kilometer. Demikian diungkapkan tim di University of Colorado, Boulder.
“Danau itu diduga memiliki ukuran 200 kilometer persegi dan kedalaman 450 meter,” tulis para peneliti tersebut di jurnalGeophysical Research Letters dan dilansir Reuters.
Sekarang tak ada perdebatan bahwa air memang ada di permukaan Mars; robot peneliti telah menemukan es. Juga ada bukti bahwa air mungkin masih merembes ke permukaan dari bawah tanah, kendati air itu segera hilang akibat cuaca dingin, atmosfer tipis Planet Merah tersebut.
Beberapa ilmuwan mengenai planet juga telah melihat apa yang boleh jadi merupakan tepi sungai raksasa dan laut, tetapi sebagian bentuk itu juga dapat diperdebatkan dan diduga terbentuk oleh longsoran tanah kering. “Ini adalah bukti pertama yang tak meragukan mengenai garis pantai di permukaan Mars,” kata Gaetano Di Achille, yang memimpin studi tersebut.
“Pengidentifikasian jalur pantai dan bukti ekologi yang menyertai memungkinkan kami menghitung ukuran dan volume danau itu, yang tampaknya terbentuk sekitar 3,4 juta tahun lalu,” kata Di Achille dalam satu pernyataan.
Air adalah kunci bagi kehidupan dan para ilmuwan mencari dengan sia-sia bukti mengenai kehidupan, baik pada waktu lalu, maupun sekarang, di Mars. Keberadaan air di planet itu juga dapat bermanfaat bagi penelitian manusia pada masa depan. “Di Bumi, delta dan danau adalah pengumpul yang sangat bagus dan pelestari tanda kehidupan masa lalu,” kata Di Achille. “Jika kehidupan pernah ada di Mars, delta mungkin menjadi kunci guna membuka rahasia biologi masa lalu di Mars,” kata Di Achille.
“Bukan hanya penelitian ini membuktikan bahwa ada sistem danau yang lama hidup di Mars, tapi kita juga dapat melihat bahwa danau yang terbentuk setelah kondisi hangat, basah, diduga telah hilang,” kata asisten profesor, Brian Hynek.
Danau tersebut barangkali telah menguap atau membeku selama perubahan iklim singkat. Demikian dikatakan para peneliti itu. Airnya diduga telah berubah menjadi uap. Tak seorang pun mengetahui apa yang mengubah Mars dari planet yang hangat dan lembab menjadi seperti sekarang: gurun beku tanpa udara.
Sumber: Kompas.com KAMIS, 18 JUNI 2009 | 15:07 WIB
ANCAMAN ITU DATANG DARI MATAHARI
Kompas.com Rabu, 22 Oktober 2008 | 08:38 WIB
Matahari. Sinar dan panasnya tentu begitu penting bagi kelangsungan kehidupan di muka bumi ini sepanjang masa. Namun, di balik benderangnya benda langit itu tersembunyi ”sisi gelap” yang mengganggu kondisi di bumi, yaitu bintik hitam (sunspot) yang diikuti badai dan flare.
Sebagai pusat peredaran planet-planet di tata surya, matahari merupakan sumber energi bagi makhluk di bumi. Energi itu dihasilkan dari reaksi termonuklir untuk mengubah hidrogen menjadi helium yang terjadi di dekat inti matahari. Suhu di bagian pusat matahari yang terdiri dari gas berkerapatan 100 kali kerapatan air di bumi itu, mencapai 15 juta derajat Celsius.
Di dalam perut matahari terjadi rotasi dan aliran massa atau konveksi yang memengaruhi gaya magnetnya. Pada aktivitas tinggi, gaya magnet ini bisa terpelintir atau berpusar hingga menembus permukaan matahari membentuk ”kaki-kaki”, yang tampak bagai bintik hitam.
Bintik hitam matahari memiliki diameter sekitar 32.000 kilometer, umumnya terdiri dari dua bagian, yaitu bagian dalam yang disebut umbra, berdiameter 13.000 km atau seukuran diameter rata-rata bumi dan bagian luar disebut penumbra yang garis tengahnya kurang lebih 19.000 km. Suhu penumbra lebih panas dan warnanya lebih cerah dibanding umbra.
Suhu gas yang terbentuk di lapisan fotosfer dan kromosfer di atas kelompok bintik hitam itu naik sekitar 800º Celsius di atas suhu normalnya. Akibatnya, gas ini memancarkan sinar lebih besar dibandingkan dengan gas di sekelilingnya.
Setelah beberapa hari, pelintiran magnetik ini terpecah menjadi beberapa pelintiran lebih tipis. Masing-masing bergerak melintasi permukaan ke berbagai arah hingga menghilang.
Seperti di bumi, di permukaan matahari pun terjadi badai. Badai matahari terjadi di daerah kromosfer dan korona—berada di atas kawasan munculnya bintik-bintik hitam. Beberapa badai matahari juga muncul ketika terjadi ledakan cahaya atau flare. Ketika flare muncul, terjadi pelepasan sejumlah besar energi. Umumnya, kian banyak bintik hitam terbentuk, maka flare pun makin banyak.
Dampak
Flare yang mengeluarkan partikel kecepatan tinggi dalam badai matahari menyebabkan timbulnya tekanan pada magnetosfer bumi hingga mengakibatkan badai magnetik di bumi. Fenomena ini mengganggu komunikasi radio dan membuat jarum kompas berputar liar di bumi.
Bintik hitam matahari dan flare, menurut Sri Kaloka, Kepala Pusat Pengamatan Dirgantara Lembaga Penerbangan dan Antariksa Nasional (Lapan), telah menimbulkan dampak berarti di beberapa wilayah di bumi—terutama di lintang tinggi—karena meningkatnya elektron di lapisan ionosfer. Tahun 1980-an, misalnya, pembangkit listrik di Quebec, Kanada, padam akibat terpengaruh badai matahari.
Gangguan di lapisan ionosfer di ketinggian 60 km-6.000 km dari permukaan bumi ini juga menyebabkan kekacauan dalam penyampaian sinyal komunikasi frekuensi tinggi, yang menggunakan lapisan itu sebagai media pemantul sinyal. Sistem navigasi dengan satelit global positioning system menjadi tidak akurat.
Jumlah bintik hitam yang tampak dari pengamatan dari bumi bervariasi, dari 1-100 titik. Bintik ini butuh waktu 11 tahun untuk mencapai jumlah tertinggi, lalu menurun lagi. Periode ini disebut siklus bintik matahari.
Sri Kaloka mengingatkan, puncak jumlah bintik hitam dapat terjadi lagi tahun 2011. Karena itu, semua pihak yang berkaitan dengan potensi dampak hendaknya mengantisipasi.
Data pemantauan bintik matahari dan flare terpantau di Pusat Pengamatan Dirgantara Lapan di Tanjungsari, Sumedang, sejak stasiun itu beroperasi 1975. Data itu dapat dimanfaatkan semua pihak yang berkepentingan. Hasilnya dikirimkan ke Bank Data di Swiss, urai Sri.
Periode dingin
Dalam kondisi ekstrem, baik tinggi maupun rendah, bintik hitam atau flare memberi dampak buruk bagi kondisi di bumi. Saat ini kejadian bintik hitam, menurut Kepala Bidang Penelitian dan Pengembangan Badan Meteorologi, Klimatologi, dan Geofisika, Mezak Ratag, justru dalam titik terendah.
Bintik hitam adalah indikator aktivitas matahari. Bila sedikit jumlahnya, energi yang dipancarkan matahari berkurang, yaitu 0,1 persen pada cahaya tampak, tetapi bisa puluhan persen pada ultraviolet. Kejadian bintik matahari bisa berkurang akibat menurunnya aktivitas dinamo matahari, konveksi, dan atau tekanan radiasi dari reaksi nuklir di pusat matahari.
Dalam beberapa tahun terakhir terjadi anomali aktivitas matahari itu. ”Hanya beberapa hari saja dalam dua tahun terakhir ini terpantau aktivitas bintik matahari,” ujar Mezak. Kondisi permukaan matahari hampir tanpa sunspot dalam beberapa tahun terakhir itu dikhawatirkan mengarah pada minimum Maunder kedua setelah kejadian pendinginan global sekitar tahun 1600-an.
Rendahnya aktivitas matahari berarti berkurangnya suplai panas ke bumi secara rata-rata global dalam skala waktu tahunan— bukan harian atau bulanan. Akan tetapi, pemanasan lokal masih bisa terjadi. Seperti beberapa bulan terakhir, suhu laut di bagian timur agak hangat, urai Mezak.
Berkurangnya suplai energi dari matahari pada bumi menyebabkan berkurangnya pemanasan lautan, berarti pula penguapan air laut yang akan menjadi hujan pun rendah.
Menurunnya suplai energi matahari juga melemahkan monsun. Gerakan angin monsun terjadi karena perbedaan panas antarlautan dan benua berdasarkan posisi garis edar matahari.
Pengaruh matahari ini tidak berkorelasi dengan peningkatan suhu udara beberapa pekan terakhir. Tingginya suhu udara di bumi disebabkan tingginya uap air, tetapi sedikit yang terbentuk menjadi awan, sedangkan matahari sudah di lintang selatan. Cahaya matahari sampai ke permukaan bumi tanpa halangan awan. Namun, inframerah yang dipancarkan ke bumi tertahan uap air sehingga menaikkan suhu. Uap air banyak dari laut.
Itu dijelaskan Mezak selaku Executive Panel Riset Monsun Organisasi Meteorologi Dunia (WMO) pada pertemuan WMO di Beijing, Selasa (21/10), berdasarkan laporan sejumlah ilmuwan dari AS, China, dan Australia. Mereka mengatakan, ada tren pelemahan monsun di berbagai tempat di bumi. ”Di Indonesia, kondisi itu mengakibatkan pelemahan monsun rata-rata dalam beberapa tahun terakhir, tetapi variasinya dari tahun ke tahun bisa besar,” tambahnya.
Senin (20/10), Pusat Data Aktivitas Matahari (SIDC) di Belgia menghentikan peringatan ”All Quiet Alert”, karena peneliti di sana mendeteksi adanya aktivitas di matahari. Namun, laporan ini belum final, mengingat banyak pakar astrofisika matahari meyakini perioda aktivitas rendah ini masih akan berlangsung lama hingga berdampak pendinginan global (global cooling).
Pada kondisi belakangan ini, China mengalami musim dingin paling dingin dalam 100 tahun terakhir, Amerika Utara mencatat rekor tinggi salju, Inggris mengalami April terdingin.
Kondisi ini bukan pertama kali ini terjadi. Dari catatan sejarah, tahun 1645-1715 matahari hampir tanpa bintik, aktivitasnya sangat lemah. Pada kurun waktu itu, suhu permukaan global sangat rendah sehingga dinamakan Zaman Es Kecil.
Yuni Ikawati
TAHUN 2012 MASA SAKRAL DAN BERBAHAYA?

Galaksi
Heboh ramalan tahun 2012 sudah berlangsung lama, tetapi baru meluas sekitar 10 tahun terakhir. Penelitian tentang hal itu dilakukan banyak ahli dari berbagai bidang ilmu dan puluhan buku sudah diterbitkan.
Observasi astronomi sangat akurat selama berabad-abad para astronom genius Maya memberi pertanda, tanggal 21/12/2012 akan menjadi kelahiran zaman baru. Masa itu paling sakral sekaligus paling berbahaya dalam sejarah Bumi.
Menurut Laurence E Joseph dalam Apocalypse 2012, tanggal 21/12/2012 merupakan titik balik musim dingin tahunan ketika belahan Utara Bumi berada di titik terjauh dari Matahari sehingga siang sangat pendek.
Pada tanggal itu, tata surya dengan Matahari sebagai pusatnya, seperti diyakini bangsa Maya, akan menutupi pemandangan pusat Bimasakti dari Bumi. Para astronom Maya Kuno menganggap titik pusat ini sebagai rahim Bimasakti. Keyakinan itu didukung banyak pembuktian para astronom kontemporer bahwa di situlah tempat terciptanya bintang-bintang galaksi.
Saat ini, sejumlah lembaga penelitian ilmiah mengenai atmosfer, ruang angkasa, dan teknologi di Barat menduga ada lubang hitam tepat di pusat itu yang menyedot massa, energi, dan waktu, yang menjadi bahan baku penciptaan bintang masa depan.
Untuk pertama kalinya dalam 26.000 tahun, energi yang mengalir ke Bumi dari titik pusat Bimasakti akan sangat terganggu pada 21/12/2012, tepatnya pukul 11.11 malam. Semua itu disebabkan guncangan kecil pada rotasi Bumi.
Bangsa Maya yakin, sesingkat apa pun terputusnya pancaran dari pusat galaksi akan merusak keseimbangan mekanisme vital Bumi dan tubuh semua makhluk, termasuk manusia.
Memaknai ramalan
Ada yang menginterpretasikan 21/12/2002 sebagai ”kiamat”, tetapi banyak pula yang memaknainya secara kontemplatif.
Pakar psikologi transpersonal dari AS, Dr Beth Hedva, yang ditemui di Jakarta beberapa waktu lalu, mengibaratkan Ibu Bumi sudah sangat dekat waktunya melahirkan. Proses kelahiran tak hanya diiringi darah dan penderitaan, tetapi juga harapan dan janji.
”Selalu terjadi kontraksi,” ujar Beth Hedva. Wujudnya perang, kekejian, dan bencana akibat penghancuran lingkungan dan perusakan atmosfer Bumi—dampak kebencian dan keserakahan manusia—serta bencana yang disebabkan faktor manusia dan nonmanusia.
Dalam antologi The Mystery 2012: Predictions, Prophecies & Possibilities (2007), ahli sistem komputer untuk ruang angkasa yang menjembatani ilmu pengetahuan dan spiritualitas, Gregg Braden, menyatakan, yang terpenting bukan apa yang akan terjadi, tetapi bagaimana potensi kolektif muncul dari pemahaman holistik dan kesadaran tentang siapa diri kita di tengah Semesta Raya.
Ahli fisika biologi dan ahli kanker pada Organisasi Kesehatan Dunia, Carl Johan Calleman, peneliti Kalender Maya, mengingatkan pada transformasi kesadaran manusia.
Robert K Stiler, Direktur Program Kajian Amerika Latin Universitas Stetson di DeLand, Florida, AS, menambahkan, ”Apa pun maknanya, bangsa Maya mengajak kita merengkuh hidup berkualitas dan kesehatan planet Bumi.”
Tahun 2012 adalah tahun berjaga dengan menyadari teknologi saja tak menjamin keberlangsungan Bumi. Begitu diingatkan José Argüelles, PhD, ahli Kalender Maya dan pakar sejarah seni dan estetika dari Universitas Chicago.
”Kalau kita tidak berjaga, planet Bumi akan hancur secara alamiah karena sekarang sudah jauh dari seimbang,” ia menambahkan. ”Pikiran manusia secara massal dikontrol dan dimanipulasi pemerintah dan institusi-institusi yang menjadi faktor kunci kehidupan modern.”
Christine Page, dokter medis, ahli homeopati dan kesehatan holistik, menjelaskan, tanggapan pada zaman baru sangat tergantung pada kemampuan memahami kesalingterkaitan dan menghargai Ibu Bumi. ”Alam dan semua makhluk hidup di Bumi adalah bagian diri kita yang harus diperlakukan penuh martabat, penghargaan, dan cinta,” ujarnya.
Jadi, pilihan ada di tangan manusia: membiarkan planet Bumi hancur atau melanjutkan evolusinya. Mari kita renungkan….
Sumber : Kompas.com – Senin, 23 Februari 2009 | 09:54 WIB
BADAI MATAHARI PERNAH TERJADI
Pada pagi hari,tepatnya 1 September 1859, salah seorang astronom terkenal di Inggris Richard Carrington tengah mengamati matahari. Dengan menggunakan alat filter, dia mempelajari permukaan matahari melalui teleskopnya. Namun, dia begitu terperanjat saat mengetahui ada kilatan cahaya terang keluar dari permukaan matahari. Tanpa diketahuinya, pada hari itu telah terjadi badai matahari yang diprediksikan dunia akan terulang kembali pada 1 September 2012.
Melansir pemberitaan Daily Mail, Selasa (21/4) dikisahkan Carrington mencatat titik cahaya terang yang merupakan awan plasma menuju ke bumi. Sekitar 48 jam kemudian dampaknya mulai terasa luar biasa. Miliaran aurora menyinari langit malam di bumi. Cahayanya sungguh kuat sehingga membuat kita mampu membaca di tengah malam.Sementara itu, di California, sekelompok pekerja tambang emas bangun lebih awal dari biasanya akibat cahaya terang yang mereka sangka sudah pagi hari. Padahal jam di saat itu menunjukkan pukul 2 dini hari. Sejumlah operator telegraf menerima kejutan listrik tak beraturan akibat arus listrik matahari menghantam jaringan telekomunikasi. Saat itu dunia seakan-akan bermandikan listrik.
Menurut laporan “New Scientist”, badai matahari atau solar storm adalah siklus kegiatan peledakan dahsyat dari masa puncak kegiatan bintik matahari (sunspot), biasanya setiap 11 tahun akan memasuki periode aktivitas badai matahari.
Ilmuwan Amerika baru-baru ini memperingatkan bahwa pada tahun 2012 bumi akan mengalami badai matahari dahsyat (Solar Blast), daya rusaknya akan jauh lebih besar dari badai angin “Katrina”, dan hampir semua manusia di bumi tidak akan dapat melepaskan diri dari dampak bencananya.
Daniel Becker dari University of Colorado seorang ahli cuaca angkasa menjelaskan, “Sekarang ini kita semakin dekat dengan kemungkinan bencana ini. Jika manusia tidak dapat mempersiapkan diri dengan matang terhadap bencana badai matahari yang akan menimpa ini. Badai matahari ini mungkin akan memutuskan pasokan listrik umat manusia, sinyal ponsel, bahkan termasuk sistem pasokan air.”
ARI JULIANTO | GLOBAL
Sumber : harianglobal.com Wednesday, 22 April 2009 08:24
MATAHARI BADAI, TELEKOMUNIKASI LUMPUH?
California, Amerika Serikat – Cahaya matahari adalah berkah bagi manusia. Namun kini, matahari bisa jadi biang kekacauan telekomunikasi di bumi. Pasalnya, aktivitas baru di matahari yang disebut Solar Cycle 24 terlacak oleh lembaga atmosfer Amerika Serikat, NOAA (National Oceanic and Atmospheric Administration).
Bintik matahari pertama sebagai penanda awal aktivitas tersebut dijumpai NOAA. Aktivitas ini akan berlangsung dalam waktu 11 tahun dengan pembentukan bintik matahari dan badai matahari yang kemungkinan memuncak di tahun 2011 atau 2012. Menurut NOAA, aktivitas tersebut bisa mengancam sistem komunikasi pesawat, sinyal GPS (Global Positioning System) dan jaringan ponsel di planet bumi.
“Bintik matahari ini adalah sinyal awal badai matahari yang intensitasnya akan terus meningkat dalam tahun-tahun mendatang,” tandas ilmuwan Douglas Biesecker dari Space Weather Prediction Center (SWPC) di NOAA.
Imajinasi Fisika

Imajinasi lebih utama daripada pengetahuan. Pengetahuan bersifat terbatas. Imajinasi melingkupi dunia. -Albert Einstein-Itulah sepatah kata yang pernah dikatakan oleh Einstein. Berbicara tentang fisika dapat menimbulkan tanggapan yang beragam. Bukan gosip lagi kalau fisika merupakan salah satu "hantu" yang ditakuti oleh banyak pelajar, baik itu di tingkat menengah, umum, dan bahkan di perguruan tinggi. Sebagian orang menghafalkan rumus-rumus fisika layaknya buku sejarah tanpa menyadari maknanya. Ada juga yang pasrah karena menganggap fisika hanyalah milik orang-orang yang serius, cerdas, gila matematika, dan pada umumnya "kurang gaul". Bahkan, tidak sedikit yang beranggapan bahwa menjadikan fisika sebagai karir hidup adalah pilihan yang salah karena "masuknya" mudah tapi "keluarnya" susah. Dengan kata lain, menjadi mahasiswa fisika tidaklah sulit tapi lulusnya setengah mati dan kerjanya paling-paling menjadi guru atau kalau beruntung bisa menjadi dosen.Beberapa pelajar mengagumi fisika karena membaca berita mengenai keberhasilan tim olimpiade fisika atau membaca buku tentang kehidupan para ilmuwan besar. Sayang, banyak juga yang hanya sebatas mengagumi tidak sampai menghayati atau mendalami fisika. Seringkali orang yang menguasai fisika dianggap sebagai orang "keren" sekaligus "aneh" karena mau belajar sesuatu yang sulit, padahal kalau jadi pengusaha bisa kaya-raya. Persepsi-persepsi demikian mengakibatkan masyarakat umum cenderung menggemari ilmu lain seperti metafisika. Disaat negara-negara lain berusaha untuk menyadarkan masyarakatnya agar tidak "gatek" alias gagap iptek negara kita melalui beberapa media massa tampaknya bekerja keras meyakinkan masyarakat agar tidak "gagib" atau gagap gaib. Padahal, penyampaian informasi ini menggunakan aplikasi fisika dan elektronika. Singkatnya, menemukan orang yang menyukai fisika bagaikan mencari jarum pentul didalam tumpukan jerami.Banyak sekali pelajar atau mahasiswa yang sabar menunggu penayangan rumus-rumus fisika di papan tulis, kemudian mengerjakan soal-soal fisika. Dari pengalaman, soal-soal tersebut diselesaikan dengan cara "gotong-royong" karena hanya sedikit orang yang bisa atau mau mengerjakannya. Keberhasilan pengajaran tidak jarang didasarkan atas kemampuan mengerjakan soal-soal ujian akhir, bukan pada penguasaan makna fisis dari rumus tersebut.Sebagai contoh, hampir semua orang di kelas tahu hukum kedua Newton, F = m.a, tetapi mungkin tak pernah terbayangkan bahwa rumus tersebut dapat menceritakan mengapa orang-orang gendut lebih suka main tarik tambang daripada lari 100 meter. Kemudian, siapa yang tak mengenal persamaan terkenal Einstein E = mc2 ? Sayang, sedikit sekali orang yang mengetahui bahwa massa sebuah buku fisika dasar mengandung energi yang dapat membawa suatu wahana antariksa ke bulan!Salah satu penyebab persepsi negatif tentang fisika adalah bahwa ilmu tersebut seringkali diajarkan tanpa penghayatan sehingga terasa menyebalkan. Padahal, melalui fisika kita dapat mengetahui banyak hal. Seorang pelajar yang mulai mempelajari ilmu ini tidak perlu jauh-jauh mengunjungi laboratorium untuk melihat fenomena fisika. Kapanpun dan dimanapun ia dapat berimajinasi (menghayal) tentang lingkungan sekitarnya. Keindahan warna bunga yang tampak oleh mata, musik yang terdengar nyaman di telinga, air terjun yang memikat, aliran angin yang sejuk, adalah sedikit contoh dari fenomena fisika sehari-hari. Penjelasan bahwa setiap warna memiliki panjang gelombang yang berbeda-beda dan bahwa benda-benda menyerap serta meradiasikan panjang gelombang tertentu sehingga sampai ke mata kita, dapat dibaca dalam buku fisika. Akan tetapi seringkali orang tidak peduli dengan penjelasan itu karena tidak berimajinasi sehingga ia lupa akan keindahan alam dan tidak memiliki rasa ingin tahu.Imajinasi lahir dari lingkungan yang mendukung seseorang agar memikirkan berbagai fenomena disekitarnya. Jika masyarakat sekitar atau keluarga di rumah tidak menghargai kebebasan berpikir maka daya imajinasi sulit untuk berkembang. Hampir semua fisikawan terkenal adalah orang-orang yang suka berimajinasi dan seringkali dikatakan sebagai pemikir "radikal" karena dianggap aneh oleh lingkungan yang seringkali bersifat dogmatis. Einstein adalah contoh populer dari orang yang suka berimajinasi dan mengembangkannya. Ia membayangkan bagaimana seandainya ia dapat bergerak dengan kecepatan cahaya. Pemikiran aneh ini menghasilkan teori relativitas khusus yang sampai kini masih digunakan. Hal yang sama dilakukan oleh Newton. Kalau saja ia tidak suka melamun dibawah pohon apel mungkin hukum gravitasi universalnya tidak ditemukan sampai berpuluh-puluh tahun kemudian.Melalui imajinasi, kesadaran untuk mengamati fenomena alam dan membaca buku-buku fisika akan muncul dengan sendirinya. Sebagai contoh, molekul air (H2O) terdiri atas dua buah atom hidrogen dan sebuah atom oksigen. Kita tentu tidak mungkin melihat molekul air dengan mata telanjang. Akan tetapi, kita bisa berimajinasi bahwa molekul-molekul tersebut berukuran kecil sekali sehingga tak tampak. Oleh karenanya, jumlah molekul yang menyusun suatu benda haruslah sangat banyak. Melalui imajinasi kita tergerak untuk mempelajari bahwa satu mol molekul air (yang beratnya sekitar 18 gram) mengandung sekitar 6 x 1023 molekul. Jadi, satu sendok air ternyata terdiri atas sekitar 1022 molekul. Jumlah itu sangatlah besar. Jika seluruh penduduk indonesia diberi tugas untuk menghitung satu per satu molekul berbeda tiap 5 detik maka itu membutuhkan waktu bermiliar-miliar tahun!Fisikawan tidak membuat rumus-rumus untuk dihafalkan atau ditulis pada telapak tangan. Rumus-rumus dibuat untuk memahami fenomena-fenomena alam dalam bentuk yang ringkas, indah, universal, dan berguna untuk menyelesaikan masalah yang menyangkut fenomena tersebut. Memang, fisika tidak mungkin terlepas dari matematika. Tanpa definisi matematis, fisika sangat sulit dikembangkan dan dimanfanfaatkan sebagai teknologi. Meskipun demikian, untuk mempelajari dasar-dasar fisika seseorang tidak perlu menjadi "gila" matematika ataupun menjadi serius dan takut tak dapat pacar karena "kurang gaul". Belajar fisika memang tidak mudah, tapi dengan melepaskan diri dari pemikiran yang dogmatis dan keinginan untuk berpikir bebas, imajinasi akan muncul dan bisa menjadi petualangan yang menyenangkan bagi siapapun